Speech Emotion Recognition using Deep Neural Networks

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Multimodal Emotion Recognition Using Deep Neural Networks

The change of emotions is a temporal dependent process. In this paper, a Bimodal-LSTM model is introduced to take temporal information into account for emotion recognition with multimodal signals. We extend the implementation of denoising autoencoders and adopt the Bimodal Deep Denoising AutoEncoder modal. Both models are evaluated on a public dataset, SEED, using EEG features and eye movement ...

متن کامل

Emotion Recognition and Classification in Speech using Artificial Neural Networks

To date, little research has been done in emotion classification and recognition in speech. Therefore, there is a need to discuss why this topic is interesting and present a system for classifying and recognizing emotions through speech using neural networks through this article. The proposed system will be speaker independent since a database of speech samples will be used. Various classifiers...

متن کامل

A breakthrough in Speech emotion recognition using Deep Retinal Convolution Neural Networks

2. School of Electronics Engineering and Computer science. Peking University, Beijing 100871,China Abstract—Speech emotion recognition (SER) is to study the formation and change of speaker’s emotional state from the speech signal perspective, so as to make the interaction between human and computer more intelligent. SER is a challenging task that has encountered the problem of less training dat...

متن کامل

Emotion Recognition Using Neural Networks

Speech and emotion recognition improve the quality of human computer interaction and allow more easy to use interfaces for every level of user in software applications. In this study, we have developed the emotion recognition neural network (ERNN) to classify the voice signals for emotion recognition. The ERNN has 128 input nodes, 20 hidden neurons, and three summing output nodes. A set of 9793...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology

سال: 2020

ISSN: 2321-9653

DOI: 10.22214/ijraset.2020.6395